
1

EMATM0044 Introduction to AI Coursework Part 1

Introduction

The task dictates that the ratio variable, net hourly energy usage of the plant (PE), be predicted using four

other ratio variables, Temperature (T), Ambient Pressure (AP), Relative Humidity (RH), and Exhaust Vacuum

(V), which represent hourly averages for the plant. As the output variable, PE, is continuous, the problem

requires a regression algorithm that maps features to the 1-dimensional real number space (ℝ) (Russell &

Norvig, 2021, p. 696). Furthermore, a supervised learning algorithm is needed to learn a function from features

to output labels (Russell & Norvig, 2021, p. 695).

Methods

Data Pre-processing

Pre-processing is an important step to undertake before modelling. The dataset was queried for any missing

data and outliers that may skew model predictions. It was discovered that there were no missing data, and

minimum and maximum values for each of the five variables reside within 3.5 standard deviations of their

respective means, implying no material outliers.

Baseline Model

Initially, each input variable was graphed against the target variable to explore any relationships that may

be insightful for modelling the data. It can be seen immediately that the variable, AT, has a strong negative

correlation with the target variable (see Fig. 1). This linear relationship can be modelled effectively using a

univariate linear regression model. Linear regression models the output variable as a linear combination of the

input variables plus some constant and error term using the equation:

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖.

Univariate linear regression is amongst the least complex supervised learning algorithms for mapping data to

ℝ. It is computationally inexpensive and provides a useful baseline for comparing more complex methods

against.

Figure 1 Each input variable graphed against the output variable (PE).

Performance Metric: Root Mean Squared Error and R2

The two metrics used to evaluate the performance of each algorithm on this problem, Root Mean Squared

Error (RMSE) and R2. RMSE is calculated as:

RMSE = √
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥⃗𝑖))2𝑁

𝑖=1 ,

where 𝑁 is the sample size, 𝑦𝑖 is the true value of the output variable, and 𝑓(𝑥⃗𝑖) is the model output as a

function of the input vector (Lewis, p. 22). It can be interpreted as the square root of the mean squared

difference between the actual value of the target variable and the model’s prediction. Thus, it measures the

2

prediction error of the model in the actual units of the target variable, making interpretation of the model errors

easier. Furthermore, it gives less weight to outliers than the Mean Squared Error (MSE). A perfect model that

predicts the value of the target variable correctly for every feature vector would have a RMSE of zero. R2 is

defined as:

𝑅2 = 1 −
∑ (𝑦𝑖−𝑓(𝑥𝑖))2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

,

where 𝑦̅ is the mean of the target values 𝑦𝑖 (Lewis, p. 23). R2 is highly interpretable and indicates how much

better the model performs relative to an unintelligent model that would simply predict the target variable mean

for each instance. A value of 1 implies a perfect model.

Experimental Setup

The dataset constitutes 9,568 instances. 20% of the dataset was randomly selected to be set aside for testing

of the final models and remains unseen throughout hyperparameter selection. The remaining 80% was used to

train the model and select hyperparameters. To avoid selection bias associated with a single validation set, 10-

fold cross validation was used to optimise model hyperparameters.

Two algorithms will be used to map the four input features to the target variable: a random forest regressor

and a multi-layer perceptron regressor. Each models a non-linear relationship between model inputs and the

output variable and is discussed in more detail below.

Multi-layer Perceptron Regressor

A multi-layer perceptron (MLP) is an example of a feedforward neural network that utilises an input layer,

output layer and one or more hidden layers of neurons (Russell & Norvig, 2021, p. 729). Each neuron calculates

a weighted sum of inputs from the previous layer and feeds this result into an activation function; the result of

which is fed to each neuron in the next layer. A loss function, like MSE in the case of regression problems, is

used to assess the model’s performance and backpropagation is used to iteratively adjust the network weights.

This is computationally expensive and so a mini-batch stochastic gradient descent algorithm is often used. To

maximise computational efficiency and allow the MLP to model non-linear relationships, the Rectified Linear

Unit (ReLU) function is selected to act as the activation function at each neuron.

In comparison to the simple univariate linear regression model described above, MLP is a discriminative

model that can extract complex, non-linear relationships between features during training. However, unlike

the baseline model, MLP has multiple hyperparameters that can be adjusted by the user to optimise its

performance for a particular problem. Hyperparameters determine an algorithm’s learning process and

ultimately affect the weights that a model learns.

MLP has multiple hyperparameters, including the number of hidden layers, the number of neurons in each

hidden layer, and the regularisation hyperparameter, alpha (α). There are several complex tuning methods that

use probabilistic methods to select optimal values for hyperparameters. In this report, cross validation is used

to adjust hyperparameters incrementally and values are selected to maximise the model’s performance on

unseen data. All three hyperparameters control model complexity and thus affect the model’s ability to

generalise to unseen data. Number of hidden layers and the number of neurons in each hidden layer determine

the number of neurons, and α determines the magnitude of network weights (Hagan et al., 2014, p. 13-2). Due

to the computational intensity of training the MLP for each permutation of the three hyperparameters noted

above, the number of layers and neurons in each layer were optimised first, and the optimal value for α was

determined using this setting. Additionally, the simplifying assumption that hidden layers constituted a uniform

number of neurons was made to further reduce computational intensity.

There are four nodes in the input layer, one node in the output layer, and 6,888 training instances. To

minimise model complexity, the maximum number of hidden layers selected was 3, and the maximum number

of neurons in each hidden layer was set to 150. Performance of the model was assessed for increments of 1

hidden layer and 10 neurons, with a minimum complexity of 1 hidden layer of 10 neurons. Fig. 2 reveals that

there is very little additional performance gained from increasing model complexity. The Ockham’s razor

3

principle suggests that the higher the model complexity, the greater the possibility of errors (Hagan et al., 2014,

p. 13-2). Thus, 1 hidden layer of 10 neurons was selected as the optimal network architecture for this problem.

Figure 2 Results of cross validation to select optimal number of hidden layers and number of neurons in each hidden layer.

Cross validation for the regularisation hyperparameter, α, revealed unusual results. Larger α values reduce

the size of model weights, thus reducing overfitting to the training set. However, as α increased, performance

on the training set increased simultaneously. From Fig. 3, model performance on the validation set appears to

be optimal for α = 40.

Figure 3 Results of cross validation to select optimal value for alpha.

Random Forest Regressor

Random forest models map input vectors to a target variable using multiple weak learner decision trees that

make predictions based on multiple single feature decision boundaries. In line with the performance metric,

RMSE, splits are determined to minimise mean squared error. An average value from all the decision tree

outputs yields a single model prediction. The result is a complex, non-linear mapping from the feature vectors

to the target variable. The hyperparameter, maximum tree depth (D), determines the maximum depth of each

decision tree. Trees with greater depth tend to overfit the training set and better generalisation performance

can be attained by specifying D (Lewis, p. 36). Other hyperparameters, including number of estimators (T)

have little effect on model performance and generalisation, and so are set to sklearn’s default values.

Cross validation is used to increment D from 1 to 20 and performance on the training and validation sets is

examined to select an optimal value for the hyperparameter. Fig. 4 visualises the validation set performance

plateauing at approximately D = 14. Thus, this was chosen as the optimal value for model prediction on the

test set.

4

Figure 4 Results of cross validation to select optimal maximum depth of each decision tree in the random forest.

Results and Analysis

To compare the performance of each of these models on unseen data, the held-out test set, constituting

1,913 instances is used. The performance metrics, RMSE and R2, are reported in the table below:

Model RMSE R2

Univariate Linear Regression (Baseline) 5.374 0.902

Multi-layer Perceptron Regressor 4.961 0.917

Random Forest Regressor 3.288 0.963

Figure 5 Results for each model’s performance on the test set.

The random forest regressor performs best on unseen data, achieving an RMSE of just 3.288 and R2 of

0.963. Comparatively, the MLP only performs slightly better than the baseline model, achieving an RMSE that

is only 7.7% smaller. The high R2 achieved by the baseline univariate linear regression model implies that the

problem can be competently modelled as a linear combination of the input variables (see Fig. 6). However, a

more complex random forest model can extract more explanatory power using a non-linear mapping. Although

an MLP model is suited to extracting complex relationships between features in a similar way, it is more suited

to problems that involve large feature vectors. The random forest is much better suited to this problem, where

there are a handful of informative features.

Figure 6 Baseline model (linear regression) results on the test set.

Due to their higher complexity, the random forest and MLP algorithms are more computationally expensive.

Consequently, the decision to choose the random forest algorithm over the baseline for predicting PE would

depend on stakeholders’ preferences regarding performance and computational intensity/training time.

5

References

1. Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesús, O. (2014). Neural Network Design 2nd

Edition. https://hagan.okstate.edu/NNDesign.pdf#page=469

2. Lewis, M. n.d. Introduction to AI Week 13 [PowerPoint slides].

https://www.ole.bris.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_252253_1&cont

ent_id=_6968911_1&mode=reset

3. Lewis, M. n.d. Introduction to AI Week 16 [PowerPoint slides].

https://www.ole.bris.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_252253_1&cont

ent_id=_6968916_1&mode=reset

4. Russell, S., & Norvig, P. (2021). Artificial Intelligence: a modern approach, ed. 3. Pearson Education

Limited.

