
1

Short-term Price Prediction using Limit Order Book

Data for Profitable High Frequency Trading in

Markets with Low Liquidity

Morgan Wynne

MSc Data Science

University of Bristol

Bristol, United Kingdom

vq22301@bristol.ac.uk

Reza Rahimi

MSc Data Science

University of Bristol

Bristol, United Kingdom

lv22609@bristol.ac.uk

Tim Chen

MSc Data Science

University of Bristol

Bristol, United Kingdom

zc16388@bristol.ac.uk

Abstract—Traders are increasingly applying price

prediction algorithms that use limit order book data to generate

profit from high frequency trading. This report addresses two

key issues in the current literature. Firstly, current state-of-the-

art algorithms make unrealistic assumptions about an asset’s

execution price that inhibit their practical application to active

trading scenarios – especially in markets characterized by low

liquidity. This report proposes a new target variable that

overcomes this assumption and uses it to achieve consistently

profitable outcomes in active trading. Secondly, models are

becoming more complex, trading interpretability and

explainability for better performance. This report investigates

this trade-off by comparing the performance of two differing

approaches to limit order book modelling. 1) A decision tree

with handcrafted features, and 2) a significantly more complex

artificial neural network that uses convolutional and long short-

term memory layers on multiple states of the limit order book to

predict trading signals.

I. INTRODUCTION

Most of the trading volume in major markets is executed
automatically using algorithms. These algorithms use diverse
data types and trading strategies to predict asset price
movements, to trade, and to ultimately generate profit. Level
2 financial market, or Limit Order Book (LOB), data
documents the full set of limit orders posted by traders at any
given point in time. Used effectively, this data contains price
signals that enable profitable High-Frequency Trading (HFT).

The use of LOB data for price prediction is an active field
of study and many contemporary methods make unrealistic
assumptions and consequently are unprofitable when applied
in active stock trading scenarios. The first assumption is the
absence of trading costs and the second is that trades can be
executed at the mid-price (Zaznov et al., 2022). Whilst
academics argue that the second assumption is irrelevant when
limit orders are used to lock in the mid-price for a given trade,
this makes the further assumption that, for each trade, both
limit orders will be fulfilled by the end of trading. This
assumption is invalidated in markets characterised by frequent
liquidity shortages that cause the best bid (ask) price at a given
time to frequently fall well below (rise well above) the lowest
(highest) transaction price in any given day.

This report begins by briefly reviewing contemporary
methods and models for predicting stock prices using LOB
data, with a focus on four aspects: 1) current model
performance on directional price prediction tasks and their

practical limitations, 2) the importance of model
interpretability, 3) limit order book modelling, and 4)
supervised feature extraction. Using these findings, the report
describes the extraction of useful features from LOB data for
an asset with low liquidity and explores the problems that low
market liquidity provides. From discussion of potential
solutions, it was concluded that both engineering a suitable
target variable and applying liquidity-related trading rules is
necessary for ensuring profitability when used in active
trading. These principals were then applied using a decision
tree model with hand-crafted features and a Convolutional
Neural Network (CNN) with a Long Short-Term Memory
(LSTM) layer that used unsupervised feature extraction. Each
model was carefully evaluated by measuring it against
multiple performance criteria and assessing its profitability in
active trading.

II. LITERATURE REVIEW

The study of stock price prediction using LOBs is an active
field of study, with developments facilitated by continuous
improvements in machine learning techniques that allow
models to better handle the high cardinality and frequency of
LOB data. In 2022, Zaznov et al. produced a survey, which
synthesises contemporary methods and results for predicting
stock price movements using LOB data, and summarises the
limitations pertaining to data input, modelling, and
experimental setup (Zaznov et al., 2022).

From 2005 to 2022, models of increasing complexity were
applied to price prediction using trading data, from simple
linear regression and Hidden Markov Models (HMM) to deep
neural networks that utilise multiple customised hidden layers
and transformer blocks. Zaznov et al. evaluates the models and
results of each study in terms of its performance, practicality,
and experimental reproducibility, and draws several
conclusions: 1) As model complexity increases, the tendency
to overfit the training data increases, consequently reducing
generalisation performance. 2) Reproducibility and
comparability between studies is difficult. Studies use varying
performance metrics and different datasets; many of which are
not publicly available. 3) All make two assumptions which
limit their practicality when applied to active stock trading:
there are no trading costs and trades can be executed at the
mid-price.

The first benchmark LOB dataset was published in 2017,
improving comparability between subsequent studies (Zaznov
et al., 2022, para. 21). The dataset contains 10 trading days of

2

millisecond-by-millisecond data for five stocks traded on the
Helsinki Stock Exchange in 2010. The data includes 10 levels
of LOB data and five indicator variables representing whether
the mid-price increased (=1), did not change (=2), or decreased
(=3) over five increasing intervals. Zaznov et al. highlight
several problems with this dataset, including class imbalance,
that the dataset may be unrepresentative of modern trading
patterns, and that the five target variables limited models once
again to making the unrealistic assumption that trades may be
executed at the mid-price.

Zaznov et al. proceed to evaluate the practicality of the
second-best performing model, DeepLOB, which attained an
F1 score of 83.40% on the benchmark LOB dataset. When
applied to active stock trading for ten well-known tickers
using a simple trading algorithm, the model achieved an
average profit per trade of GBX 0.01. During the same period,
the average spread (the gap between the best ask price and the
best bid price) was GBX 0.1 – ten times the average profit per
trade. If it was assumed that trades may be only executed as
market orders at the best ask and bid prices, the model would
have certainly made a loss. This highlights the inapplicability
of the mid-price assumption made in contemporary
experimental set ups to markets with low liquidity and is the
first major motivation for the discussions and experiments
described in this report.

Another major problem with applying these models in
active training is their interpretability. As models increase in
complexity, there is a trade-off between performance and
explainability. Deloitte described the need for explainable
models as “a top priority for many banks” (Deloitte, 2022,
para. 9). Exacerbated by the 2008 crisis and the failure of
LTCM, Chief Data Officers (CDO) at major banks are
constrained by tight MiFID regulations that assess the risk
parameters inherent in their algorithms (European Central
Bank, 2019). If banks are unable to interpret the decisions that
their algorithms make, it is very difficult to justify their
deployment to active trading. Deep learning techniques like
DeepLOB and TransLOB consist of many hidden layers,
yielding a black-box model of prediction and low
interpretability. One data science technique for increasing
interpretability whilst retaining accuracy is to use less complex
models and supervised feature extraction to transform the
model input into explainable features that aim to capture the
important information in the data. This fundamental choice
between supervised or unsupervised feature extraction forms
the second key factor explored in this report.

To understand which features can be extracted from LOB
data to explain price movements, it is useful to consider the
LOB as a modelling task. Gould et al. published a survey
examining the findings from previous attempts to model a
LOB and discusses how these models provide insights into
certain aspects of the mechanism (Gould et al., 2013, p. 1).
Several key features of LOBs emerge, including long memory,
the effect of order flow imbalance on permanent price impact,
depth profiles and patterns, and market liquidity. Three key
aspects that have potential to effect price movements were
selected to be examined in more detail: 1) Order Flow
Imbalance (OFI) over a given period, 2) volume-related
features, and 3) the bid-ask spread.

OFI expresses the net order-flow imbalance at the best
quotes, considering market orders, limit orders, and limit order
cancellations (Xu et al., 2019, p. 5). Cont et al. hypothesised
that given a short period of length t, the difference between the

net flow of orders at the best bid price and the best ask price
reflects demand and supply pressures that impact
contemporaneous price movements (Cont et al., 2013, p. 1).
The authors used one month of trading data from April 2010
for 50 randomly chosen stocks from the S&P 500 index (Xu
et al., 2019, p. 6). The OFI and contemporaneous price change
were estimated for intervals of 10 seconds and grouped into
30-minute windows. For each window, mid-price (m(t))
changes over each interval were regressed on the
corresponding OFI. The regression coefficient on OFI was
discovered to be statistically significant in 98% of cases,
implying a strong positive correlation between OFI and mid-
price movements.

Gould et al. observes that price and market impact is a
concern for traders wishing to trade a volume larger than the
depth at the best quotes (Gould et al., 2013, p. 14). Price
impact describes the effect of a market order on the best ask
(a(t)) and best bid prices (b(t)), whilst market impact describes
the overall effect of a trade on the LOB (L(t)). For example, if
a trader wishes to submit a buy market order 20 times the lot
size of an asset and the depth at a(t) is 7 times the lot size, the
price impact would be the change in a(t) that would result if
the full trade was executed at time t. The market impact would
be the corresponding effect on both a(t) and the volume at the
next highest ask price. Future price movements are therefore
likely affected by the relative volumes at the best quotes, and
the overall volumes on each side of the order book.
Furthermore, Cartea et al. discovered that when the LOB is
buy-heavy, i.e. there is greater volume at b(t) than a(t), then it
is much more likely that the next market order will be a buy
order than a sell order (Cartea et al., 2015, p. 2). Cartea et al.
quantify the imbalance between order volume at the best
quotes using Order Book Imbalance (OBI), defined as:

 𝑂𝐵𝐼𝑡 = (𝑉𝑡
𝑏 − 𝑉𝑡

𝑎) / (𝑉𝑡
𝑏 + 𝑉𝑡

𝑎) (1)

where 𝑉𝑡
𝑏 represents the order volume at the best bid price 𝑉𝑡

𝑎
represents the best ask price at time t (Cartea et al., 2015, p.
4).

Studies on LOBs for numerous exchanges observed that
traders placed more orders with a price above (below) the best
bid price (best ask price) when the bid-ask spread (s) was
larger than its median value (Gould et al., 2013, p. 12). Biais
et al. (1995) hypothesised that this was because, when s is
larger, market orders become less attractive. Gould et al.
further argue that it is explainable within a zero-intelligence
model – if limit order prices are chosen randomly, then when
s is large, there is a higher probability that an incoming limit
order will fall between b(t) and a(t) (Gould et al., 2013, p. 12).
Regardless, this pattern implies that changes in b(t) and a(t),
and consequently m(t), are affected by the size of the bid-ask
spread at time t.

III. METHODOLOGY

A. The Dataset and Exploratory Data Analysis

The datasets used in the study were provided by HSBC
Global Markets and constitute the “tape” and LOB data for a
single tradeable asset over a 6-month period. Each item in the
LOB dataset corresponds to the state of the LOB following a
change to limit orders quoted. This change could be caused by
an incoming market order or limit order, or a cancellation of a
limit order. The dataset for each trading day consists of three
attributes: the timestamp t corresponding to the LOB at time t

3

(L(t)), the bid-side depth profile (p, nb (p, t)) at t, and the ask-
side depth profile (p, na (p, t)) at t. Each item in the tape dataset
represents a market order with corresponding timestamp,
execution price, and volume traded.

Data for one trading day, chosen arbitrarily, was used to
explore patterns and features of the LOB for this asset. First,
b(t), a(t), s(t), and m(t) were extracted and aggregated to attain
early signals for asset price volatility and market liquidity. Fig.
1 shows that a(t) is highly volatile with a Coefficient of
Variation (CV) of 56.11% for the trading day selected.
Consequently, m(t) is also highly volatile with its range over
three times the mean value.

Fig. 1. Summary Statistics for b(t), a(t), s(t), and m(t).

Fig. 2 visualises b(t) and a(t) for 1000 arbitrarily chosen
consecutive timestamps. a(t) is characterised by frequent
liquidity shortages on the sell-side of the LOB that cause it to
increase sharply at regular intervals before returning to a stable
price.

Fig. 2. b(t) and a(t) for 1000 arbitrarily-selected consecutive timestamps.

B. Baseline ARIMA and MACD Models

As a performance baseline, an ARIMA model was applied
in conjunction with a simple trading algorithm. In alignment
with the literature, mid-price was used as a target variable, and
the ARIMA model was designed to perform a one-step
forecast of the mid-price based on the historic mid-prices. A
10-second slide window is applied to compute the average
mid-price for each period. In this way, the computational
intensity is reduced, and the prediction reflects the mid-price
for the prior period, rather than a single timestep in the LOB.
Predictions are made using a rolling forecast method. To do
this, the ARIMA model is recreated after each new
observation is received.

Rather than the solely considering the price, the Moving
Average Convergence/Divergence (MACD) of the mid-price
was investigated. The MACD indicator gives more
information about the trend of the price. The MACD
measurement is calculated by subtracting the 26-period
Exponential Moving Average (EMA) from the 12-period
EMA. EMA places more weight on the latest data and is thus,
more responsive to the latest price changes. A positive MACD
value indicates an upward trend whereas a negative MACD
value indicates a downward trend.

The trading algorithm assumes that only one share can be
held each time. When there is no inventory, it compares the
next predicted price with the mean price from the previous 3
time periods, and checks if the mean of the previous 3 MACD
values is negative. If both conditions are met, it will place a
buy market order. Under the scenario that there is a positive
inventory, it does the same comparison. If the predicted price
is lower than the mean price, but higher than the mid-price,
and the MACD mean is positive, it will then sell the share.
Otherwise, a random number (0-1) will be generated, and the
algorithm will sell or keep the share with a 50/50 probability.

Under the assumption that trades can be executed at the
mid-price, the trading algorithm generates a small profit in
most cases.

C. Supervised Feature Extraction

It was hypothesised that model performance may be
improved by extracting handcrafted features proven to be
statistically significant in the academic literature when used to
predict price movements. Each feature is described in turn.

1) Order Flow Imbalance
OFI was extracted from the data in alignment with the

equations used by Cont et al. Let q1(τn) represent the total order
volume at the best ask price and r1(τn) the total order volume
at the best bid price at timestamp τn. Let both represent values
after applying the effect of the nth order arrival or cancellation
(Xu et al., 2019, p. 5). For a given interval (tk-1, tk],

 𝑂𝐹𝐼(𝑡𝑘−1, 𝑡𝑘) = ∑ 𝑒𝑛,{𝑛|𝑡𝑘−1<𝜏𝑛≤𝑡𝑘} (2)

where

𝑒𝑛 ∶= ∆𝑊(𝜏𝑛) − ∆𝑉(𝜏𝑛), (3)

where

∆𝑊(𝜏𝑛) = {

𝑟1(𝜏𝑛), if 𝑏1(𝜏𝑛) > 𝑏1(𝜏𝑛−1),

𝑟1(𝜏𝑛) − 𝑟1(𝜏𝑛−1), if 𝑏1(𝜏𝑛) = 𝑏1(𝜏𝑛−1),

−𝑟1(𝜏𝑛−1), if 𝑏1(𝜏𝑛) < 𝑏1(𝜏𝑛−1);

 (4)

and

∆𝑉(𝜏𝑛) = {

−𝑞1(𝜏𝑛−1), if 𝑎1(𝜏𝑛) > 𝑎1(𝜏𝑛−1),

𝑞1(𝜏𝑛) − 𝑞1(𝜏𝑛−1), if 𝑎1(𝜏𝑛) = 𝑎1(𝜏𝑛−1),

−𝑞1(𝜏𝑛), if 𝑎1(𝜏𝑛) < 𝑎1(𝜏𝑛−1).

 (5)

The OFI was extracted for 10 second intervals and the
experiment carried out by Cont et al. described in Section II
was replicated for data on one full trading day. For 88% of
non-overlapping 30 minute windows, the 10 second OFI was
positive and statistically significant at the 95% level. Fig. 3
shows the relationship for the full trading day.

Fig. 3. 10-second contemporaneous mid-price change regressed on OFI.

Statistic b(t) a(t) s(t) m(t)

Mean 103.69 164.28 60.60 133.99

Standard Deviation 8.54 92.18 91.80 46.66

Minimum 1.00 90.00 1.00 45.50

Maximum 110.00 800.00 703.00 454.00

4

2) Order Book Imbalance
The OBI at each timestamp was extracted by applying (1)

as in Cartea et al.

3) All-Level Order Volume Difference (AVD)
Although the OBI captures volume-related effects on price

movements at b(t) and a(t), it doesn’t consider volume
changes across all levels of the LOB. For example, in a case
where volume at b(t) is high but total volume at other levels of
the bid side is low, then OBI would be high, but a large sell
order could cause a large negative price impact. To capture the
relative depth profiles across all levels, the absolute difference
between the total volume of quotes on the buy and sell sides
of the LOB was extracted from the data and was calculated as:

𝐴𝑉𝐷 = ∑ 𝑁𝑏(𝑝, 𝑡)
max

𝑚
𝑝

𝑝=0 − ∑ 𝑁𝑎(𝑝, 𝑡)
max

𝑚
𝑝

𝑝=0 , (6)

where m is the total number of levels, p is the relative price,
Nb(p,t) is the depth at relative price p and time t on the bid side,
and Na(p,t) is the depth at relative price p and time t on the ask
side. AVD was extracted for each timestamp t.

An indicator variable describing the direction of the
forward 10s mid-price change (1 – mid price increased from t
to t + 10s, 0 – mid-price decreased from t to t + 10s) was
extracted. This feature was then regressed on the 10s OFI,
OBI, AVD, and s(t) for one full trading day using binary
logistic regression. Coefficients for each variable and their
statistical significance were used as a preliminary test for each
feature’s ability to explain short-term mid-price changes.

The coefficients for the intercept, OBI, AVD, and s(t) were
statistically significant at the 99.9% level. Whereas the OFI
was statistically insignificant with a p-value of 0.49. The
coefficients for the intercept and OBI were positive and all
others were negative. The results imply that although OFI can
ably predict contemporaneous mid-price changes, it may be
less effective for predicting forward price changes. The model
attained an accuracy of 80.2%. However, when s(t) was
removed, this score decreased to 61.4%. It’s high significance
and negative sign are potentially reflective of mean reversion
following liquidity shortages on the ask-side of the LOB and
not actual trading signals. When removed, OFI also becomes
statistically significant at the 99.9% level, hinting at potential
problems with the model in its current form. This issue is
addressed in detail in the next section.

D. Target Variable Engineering

Zaznov et al. highlight the limiting effect that the
assumption that trades can be executed at the mid-price has on
real-world application of contemporary models. The problem
is exacerbated for markets with frequent liquidity shortages,
where predictions of mid-price changes are often instead
predicting large bid-ask spreads that reflect low market
liquidity. To validate this hypothesis, the execution prices for
one trading day of LOB data were examined. Fig. 4 shows
summary statistics for the execution price of trades for the
same trading day as Fig. 1. The mid-price assumption only
holds if limit orders are submitted at equal distances from the
desired mid-price and are executed by the end of the trading
day. Reviewing both tables reveals that, for this asset, when
the best ask price rises, quotes submitted at this dramatically
higher level will never be fulfilled by the market. The mid-
price is therefore an unviable target variable for models whose
purpose is to trade profitably in markets with low liquidity.

Fig. 4. Summary stats for execution price for trading day used in Fig. 1.

A trading algorithm that aims to trade profitably requires a
model that predicts changes in the true price of the asset.
Based on the premise that an asset’s true price is what
someone last paid for it, it was hypothesised that the most
recent execution price fulfilled this requirement. Thus, the tape
and LOB data were combined, and a new target variable was
extracted that indicated whether the most recent execution
price at time t + 10s had increased (= 1) or decreased (= 0)
relative to the most recent execution price at time t. When
regressed on OFI, OBI, AVD, and s(t) for the same full trading
day used previously, each of the explanatory variables were
statistically significant at the 99.9% level, achieving an
accuracy score of 63.5% with s(t) and 62.7% without it.
Although this is a logical improvement from mid-price, the
most recent execution price does not consider market liquidity
at time t or t + 10s. Consequently, a wide bid-ask spread at
either timestamp may mean that the trader cannot execute
trades at a price near the most recent execution price, resulting
in losses despite the model indicating a trade signal.

A new target variable was proposed to tackle this problem
and is calculated as:

𝑆𝑖𝑔𝑛𝑎𝑙 = {
0, if 𝑏1(𝜏𝑛) ≥ 𝑎1(𝜏𝑛+𝑡) + 𝑀𝑆,

2, if 𝑎1(𝜏𝑛) ≤ 𝑏1(𝜏𝑛+𝑡) − 𝑀𝑆,
1, otherwise,

 (7)

where b1(τn) and a1(τn) represent the best bid and ask price at
timestamp τn, and b1(τn+t) and b1(τn+t) represent the best bid and
ask price after some arbitrary regular interval t. A value of 0
signifies to the trading algorithm that the current bid price is
greater than or equal to the future ask price plus some arbitrary
Margin of Safety (MS). Thus, the algorithm should sell the
asset and buy it back after t seconds to make a profit. The same
logic is applied to a buy signal, represented by a value of 2. In
all other cases, the equation returns a value of 1, indicating that
trading at timestamp τn and reversing the trade at τn+t is not
profitable for a given MS. MS can be chosen to best

accommodate a trader’s risk tolerance. This new target
variable considers market liquidity at both τn and τn+t, and
when used as a target variable for price prediction, indicates
trade signals based on the true price of the asset. Thus, price
prediction tasks described in the rest of this report use (7) with
MS = 2 and t = 10s for each model’s target variable.

E. Modelling

Two approaches to modelling the target variable were
considered. Each approach was dictated by the model input
chosen: handcrafted features described in Section C or
unsupervised feature extraction using artificial neural
networks (ANN).

1) Modelling with Handcrafted Features
Decision tree models for classification provide a highly

interpretable non-linear mapping between a vector of inputs
and a class label. Using a decision tree model for this task
assumes that the input variables, 10s OFI, OBI, AVD, and the

Statistic Execution Price

Mean 104.36

Standard Deviation 3.61

Minimum 90.00

Maximum 110.00

5

bid-ask spread, at time t are necessary to predict whether a
trade executed at time t and reversed at time t + 10s will
generate a profit.

To reduce selection bias, 9-fold cross-validation was used
on a randomly chosen window of 9 consecutive trading days.
To simulate batch training in active trading, the model was
trained on eight trading days and then used to predict trading
signals and resulting profit for the ninth day.

2) Modelling using Unsupervised Feature Extraction
Instead of running supervised learning algorithms on

handcrafted features, neural networks can be used to learn
features automatically from the LOB data. Convolutional
Neural Networks (CNNs) are very powerful tools for
extracting information using filters. With a careful design of
filters and strides, it can learn relevant features and capture
useful local spatial dependencies from the input data. In the
example of using the LOB, each level in the LOB contributes
differently to the change in the price.

Long Short-Term Memory Networks (LSTMs) were
designed originally to solve the gradient vanishing problem
that occurs in Recurrent Neural Networks (RNNs). The
concept of gates was introduced in LSTM to control the flow
of information, thus enabling the network to “choose” what
information to remember and what to forget. Like RNNs,
LSTMs learn time dependencies from the data but also
maintain a much longer memory.

Data normalisation is required before feeding the data into
the neural network. It is an important step because the model
performance is highly dependent on the normalisation process.
A robust normalisation scheme allows the model to adapt to
frequent price changes in a volatile market. Instead of
normalising data statically, a dynamic normalisation scheme
is used for this task. To normalise the current day’s data, the
mean and standard deviation of the data from the three
previous days are used. Specifically, normalisation is done by
removing the mean and scaling to unit variance. The
normalised value for a sample x is calculated as:

𝑧 = (𝑥 − 𝑢) / 𝑠 (8)

where u and s are the mean and standard deviation of the
training samples respectively. In this task, the most recent 10
states of the LOB are used as input to the network and a single
state contains 6 levels of LOB data. Specifically, a single input
can be denoted by

𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥10] ∈ 𝑅𝟙𝟘×𝟚𝟜, (9)

where 𝑥𝑡 = [𝑃𝑎
{𝑖}

, 𝑉𝑎
{𝑖}

, 𝑃𝑏
{𝑖}

, 𝑉𝑏
{𝑖}

]
𝑖=1

𝑛=6

 with 𝑃{𝑖} and

𝑉{𝑖} denotes the price and volume of the i-th level of the limit
order book. This results in a single input of shape (10, 24).
After processing the limit order data, the 10 second forward
trade signal described in (7) with MS = 2 is used as target
variables for each timestamp.

Instead of feeding the data directly to an LSTM network,
the network was designed to combine both CNN layers and
LSTM layers. Feature maps learned by the CNN layers not
only capture the spatial dependencies, but also preserve the
time information in the data. In total, the network contains
three convolutional layers and one LSTM layer. The purpose
of the final LSTM layer is to capture the time dependencies in
the resulting feature maps. CNN layers use filters with a
defined stride to slide through the input, which means

parameters are shared between input features. In this task, the
size of the filters from the first two convolutional layers is set
to (1 x 2) with a stride of (1 x 2). The intuition behind this is
that the parameters are shared by each price-volume pair at the
first layer. At the second layer, the receptive field is expanded
as parameters are now shared by each level of the limit order
book. After two layers of convolution, the resulting feature
maps will have a shape of (10, 6). In the last convolutional
layer, a filter of size (1 x 6) is applied to integrate all the
information from the feature maps, resulting in final feature
maps of shape (10, 1). Note that each convolutional layer uses
32 filters, the output is then reshaped and fed into the LSTM
layer with 64 units. The output layer uses a softmax activation
function and hence the output reflects the probability of the
three trading operations (sell, neutral, buy).

Fig. 5. Network architecture diagram.

F. Trading Algorithm and Profit Assumptions

The models described above map inputs to trade signals,
which instruct the trader to buy or sell at time t and reverse the
trade at time t + 10s to generate a net profit. During testing,
false positives often led to outsized per-trade losses when the
spread at time t or t + 10 was large. To mollify the negative
effect of these instances on profitability, two simple trading
rules were implemented:

1. If s(t) > 𝑥, where 𝑥 is a variable to be determined, do
not execute the trade.

2. If reversing the trade at time t + 10s is not profitable,
hold the position as inventory.

For performance evaluation and comparability between model
performance, it was necessary to include the value of
inventory in profit calculation for each trading day. Therefore,
total profit was calculated as the summation of three numbers:
1) profit from executed (and reversed after 10s) trades, 2) net
profit from ‘netting’ the inventory of buy orders and sell orders
at their average price, and 3) profit from selling (buying back)
the remaining inventory at the day average bid (ask) price.

For example, the model generates 35,879 from trading on
correct predictions (making the indicated trade and reversing
it after 10s). It makes a total of 3,768 incorrect sell predictions,
yielding a sell inventory of 3,768 with average price 105. It
also makes a total of 7,531 incorrect buy predictions, yielding
a buy inventory of 7,531 buy orders with average price £1.08.
The day average bid price was 106. Total Profit (TP) is
calculated as follows:

𝑇𝑃 = 35,879 + (−3 ∗ 3,768) + ((7,531 − 3,768) ∗ −2) = 17,049

6

For simplicity, this makes the realistic assumption that any
remaining inventory can be sold (bought back) at the average
bid (ask) price for the trading day. More sophisticated
methods, including using the moving average bid (ask) price
to inform inventory offloading decisions, are likely to yield
superior profit performance.

This aim of this report is to create models that produce
profitable outcomes in active trading, not maximise profit
generation. Therefore, volume per trade is always equal to 1.
Although this limits total profit generated, the additional
complexity provided by mechanisms to optimise volume
traded is outside the scope of this report.

IV. DATA DESCRIPTION / PREPARATION

Nine consecutive trading days were randomly sampled
from the dataset. For the decision tree model using handcrafted
features, 10s OFI, OBI, AVD, and s(t) were extracted using
the equations described in Section III C. The target variable –
10s forward price signal described in (7) with MS = 2 – was
extracted for each timestamp in the dataset. Total instances of
each class are shown in Fig. 6.

For the ANN, five consecutive days were randomly
sampled from the dataset to train the model and feature vectors
were extracted in the form described in Section III. The dataset
consisted of 1,604,195 instances and exhibited similar class
imbalances to those in Fig. 6. The model was trained using a
window size of 20 and a stride of 1 and used the same target
variable described above. Another five consecutive days were
randomly sampled for testing.

Class Label Number of Instances

0 (Sell Prediction) 262,833

1 (Neutral Prediction) 2,374,833

2 (Buy Prediction) 231,696

Dataset Size 2,869,362

Fig. 6. Decision tree Model dataset class summary.

V. RESULTS AND DISCUSSION

The performance of each model is evaluated in turn.
Section C compares the benefits and drawbacks of applying
each approach to active trading.

A. Decision Tree Results

Fig. 7 displays the average performance metrics for the
decision tree model’s performance across each of the nine
days used as a test set.

Accuracy 73.18%

Macro-average Precision 42.61%

Macro-average Recall 42.85%

Macro-average F1 42.66%

Sell Prediction (=0) Precision 11.36%

Sell Prediction (=0) Recall 12.68%

Buy Prediction (=2) Precision 31.35%

Buy Prediction (=2) Recall 31.89%

Fig. 7. Average decision tree model performance metrics from 9-fold cross

validation.

Macro-averages were chosen to reflect equal class
importance for active trading. Precision is useful for
evaluating whether the model is profitable, and recall is useful
for determining the proportion of profit opportunities it takes

advantage of. For profitability, class-specific precision for
classes 0 and 2 are more important than that for class 1, as false
positives lead to unprofitable trades. Class-specific recall for
classes 0 and 2 indicate the proportion of sell and buy
opportunities respectively the model predicts correctly. A
further review of the normalised confusion matrix for all 9 test
days in Fig. 8 visualises the problem of class imbalance for
making predictions using the decision tree model.

Fig. 8. Decision tree model normalised confusion matrix for performance

on all 9 test sets.

 The model does well at predicting the majority class (=1),
with a recall score of 83.89%. However, it achieves precision
and recall scores for the buy class (=2) of <35% and precision
and recall scores of <13% for the sell class (=0). Decision tree
models are notoriously poor at predicting minority classes due
to the prioritising of the majority class during tree-building.

Using the model predictions, profits generated by the
trading algorithm described in Section III F can be seen in Fig.
9. Despite poor classification performance, the algorithm was
consistently profitable throughout the period, making a
positive total profit for every trading day except day 4 for x =
5. As expected, higher values for the minimum spread yielded
increasing variability in daily profit, with x = 5 achieving the
maximum or minimum total profit for 78% of trading days.
Considering a trader’s risk tolerance, values for x of 1, 2, or 3
are all viable options. Values of 4 and 5 do not yield superior
profits, but still experience higher standard deviation of
profits.

Day
Profit with Trading Algorithm Min s(t) Condition (x)

x = 1 x = 2 x = 3 x = 4 x = 5

1 9,816 14,676 15,616 16,771 17,916

2 5,758 6,748 6,821 6,646 6,950

3 5,383 9,071 10,641 10,760 12,127

4 4,185 2,849 1,577 380 -1,299

5 6,186 7,790 8,040 6,760 6,188

6 4,652 4,212 2,180 524 56

7 6,584 8,601 8,059 8,135 7,817

8 4,529 6,497 7,094 6,639 7,277

9 7,541 11,539 13,826 13,860 16,018

Total 54,633 71,984 73,853 70,475 73,050

Average 6,070 7,998 8,206 7,831 8,117

Std 1,666 3,389 4,420 5,141 6,092

Fig. 9. Decision tree model profit performance for each of the 9 test days

and each value of x (minimum spread condition parameter used in the trading

algorithm).

7

B. Neural Network Results

Fig. 10 displays the average performance metrics for the
ANN’s performance across each of the five days used as a test
set. It is immediately apparent that the ANN outperforms the
decision tree model for trade signal prediction using the LOB
data. However, it suffers from similar problems relating to
class imbalance, yielding a class-specific recall for the sell
class (=0) of close to 0%.

Accuracy 85.93%

Macro-average Precision 76.07%

Macro-average Recall 58.04%

Macro-average F1 53.23%

Sell Prediction (=0) Precision 80.00%

Sell Prediction (=0) Recall 0%

Buy Prediction (=2) Precision 59.21%

Buy Prediction (=2) Recall 78.51%

Fig. 10. Average ANN performance metrics

The CNN model achieves a similarly high performance
when predicting the majority class (=1) with an accuracy of
95%. However, the class-specific precision and recall scores
for the buy class (=2) have improved significantly by 28% and
47% respectively. This implies that it will be more profitable
than the decision tree for buy market order opportunities.

As can be seen in Fig. 11, the major limitation of the CNN
model is that it fails to predict sell signals. This is once again
due to imbalanced classes and the model struggles to
distinguish a sell signal from a neutral signal. Down-sampling
the majority class was applied to attempt to resolve this
problem. However, the model fails to generalise well on the
test data, instead predicting a large proportion of neutral
instances as sell signals. This suggests that the features that
characterise sell signals are very similar to those of neutral
instances.

Fig. 11. ANN normalised conufsion matrix for performance on the test set.

Profits generated by applying the ANN and trading
algorithm to unseen data can be seen in Fig. 12. Note that the
results from the table are obtained by setting x to 3, the optimal
value discovered in Fig. 9. Even though the model fails to
predict sell signals, it consistently generates much higher
profits than the decision tree model. On five days of test data,
it yields an impressive average daily profit of 61,396.46.

Day Total Profit

1 92,745.65

2 50,876.84

3 54,878.67

4 43,098.58

5 65,382.58

Total Profit 306,982.32

Average 61,396.46

Standard Deviation 19,278.34

Fig. 12. ANN profit performance for each of the 5 test days.

C. Implications for Active Trading

Although both models have problems that stem from class
imbalances and consequently struggle to predict trading
accurately, both generate consistently positive profit for each
trading day tested. This implies that the decision to choose the
target variable engineered in Section III over the frequently
selected mid-price is effective for improving practicality of
models for markets with low liquidity. Active traders can
utilise this approach for profitable trading in real markets.
Furthermore, state-of-the-art models and more sophisticated
trading algorithms, are likely to achieve similar, if not better,
results.

The ANN generates, on average, 800% more profit per
trading day. This reflects its ability to model more complex
relationships between features and the information lost in
supervised feature extraction. Furthermore, the results
demonstrate the trade-off between interpretability and
performance. Although the decision tree model performs
worse and generates inferior profits for unseen data, it makes
highly interpretable decisions that can be explained by
understandable, calculated features. More advanced
Explainable AI (XAI) techniques may improve this trade-off,
but ultimately optimal model complexity is determined by
users’ preferences and restraints.

VI. FURTHER WORK AND IMPROVEMENT

A. Class Imbalance

Both models suffered from class imbalance problems that
could be solved using upsampling methods or class
reweighting. Further work that applied these methods is likely
to achieve better performance on unseen data.

B. Computational Limitations

Training the CNN was computationally expensive. To
improve comparability and robustness of results, it would have
been beneficial to use 9-fold cross validation on the same 9
days of LOB data used to test the decision tree model when
testing the CNN’s performance. Furthermore, performance be
improved by utilising more trading days to train the model.
Both these improvements were infeasible given time and
computational limitations.

C. Probabilistic Modelling

Probabilistic modelling is a statistical approach that places
a probability distribution over model parameters. Unlike
frequentist approaches, probabilistic models use Bayesian
inference to infer the parameters of the model given the
observed data and prior knowledge. The result is the
incorporation of uncertainty into model predictions.

8

Using a Bayesian decision tree, Probabilistic Artificial
Neural Network (PANN), or other probabilistic model to make
predictions would enable a trading algorithm to consider
prediction uncertainty and make better-informed trading
decisions accordingly. This is likely to lead to more profitable
trading outcomes than those described in this report.

D. Reinforcement Learning

Reinforcement learning is a relatively new agent-based
approach to LOB price prediction. An agent learns to predict
the future price by taking actions that modify the limit order
book and observing the resulting rewards. The rewards are
based on the difference between the predicted price and the
actual price, and the agent uses these rewards to update its
policy for taking actions. Future work could use the
experimental setup described in this report in combination
with reinforcement learning models, like the S3C model, to
investigate whether they improve profitability.

VII. CONCLUSIONS

Existing techniques for price prediction using LOB data
make the unrealistic assumption that trades can be executed at
the mid-price. This assumption is invalidated for markets with
low liquidity. High bid-ask spread volatility in these markets
means that models trained to predict mid-price changes cannot
be applied profitably to active trading scenarios. This report
describes methods used to engineer a target variable that
considers the quoted best bid and ask prices, thus overcoming
these challenges.

Two approaches to modelling this variable were proposed.
1) A decision tree model using highly interpretable
handcrafted features, including the OFI, OBI, AVD, and s(t),
and 2) an ANN with LSTM and CNN layers, which uses 10
previous states of the LOB to make its prediction. Despite
problems with class imbalance that caused suboptimal
classification performance, both achieved profitable outcomes
when combined with a simple trading algorithm that
considered market liquidity and made realistic inventory
assumptions.

There is increasing importance placed on model
interpretability by regulators and finance professionals and
one method for achieving this is to use less complex models
with interpretable features. Although the handcrafted features
described in this report provide some information for
predicting trade signals, the ANN generated on average 800%
more profit per trading day than the decision tree model. This
implies that price prediction using LOB data is an inherently
complex problem, and to achieve the highest profitability,
statistical techniques that can model this complexity are
required.

The results suggest that adjustments to experimental set
up, when combined with state-of-the-art modelling and
trading algorithms conditioned on market liquidity, can
overcome the practicality issues associated with current
methods. Future work can build on the methods and findings
described in this report and apply them to active trading
scenarios.

REFERENCES

[1] Cartea, lvaro, Donnelly, R. F., & Jaimungal, S. (2015). Enhancing
Trading Strategies with Order Book Signals. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2668277

[2] Cont, R., Kukanov, A., & Stoikov, S. (2013). The Price Impact of Order
Book Events. Journal of Financial Econometrics, 12(1), 47–88.
https://doi.org/10.1093/jjfinec/nbt003

[3] Deloitte. (2022, May 17). Unleashing the power of machine learning
models in banking through explainable artificial intelligence (XAI).
Deloitte Insights.
https://www2.deloitte.com/uk/en/insights/industry/financial-
services/explainable-ai-in-banking.html

[4] European Central Bank. (2019, February 13). Algorithmic trading:
trends and existing regulation. European Central Bank - Banking
Supervision.
https://www.bankingsupervision.europa.eu/press/publications/newslet
ter/2019/html/ssm.nl190213_5.en.html

[5] Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J.,
& Howison, S. D. (2013). Limit order books. Quantitative Finance,
13(11), 1709–1742. https://doi.org/10.1080/14697688.2013.803148

[6] Xu, K., Gould, M., & Howison, S. (2019). Multi-Level Order-Flow
Imbalance in a Limit Order Book. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.3479741

[7] Zaznov, I., Kunkel, J., Dufour, A., & Badii, A. (2022). Predicting Stock
Price Changes Based on the Limit Order Book: A Survey. Mathematics,
10(8), 1234. https://doi.org/10.3390/math10081234

Github repository: https://github.com/zepingchen/dsmp-hsbc-13

https://github.com/zepingchen/dsmp-hsbc-13

