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Abstract—Traders are increasingly applying price 

prediction algorithms that use limit order book data to generate 

profit from high frequency trading. This report addresses two 

key issues in the current literature. Firstly, current state-of-the-

art algorithms make unrealistic assumptions about an asset’s 

execution price that inhibit their practical application to active 

trading scenarios – especially in markets characterized by low 

liquidity. This report proposes a new target variable that 

overcomes this assumption and uses it to achieve consistently 

profitable outcomes in active trading. Secondly, models are 

becoming more complex, trading interpretability and 

explainability for better performance. This report investigates 

this trade-off by comparing the performance of two differing 

approaches to limit order book modelling. 1) A decision tree 

with handcrafted features, and 2) a significantly more complex 

artificial neural network that uses convolutional and long short-

term memory layers on multiple states of the limit order book to 

predict trading signals. 

I. INTRODUCTION 

Most of the trading volume in major markets is executed 
automatically using algorithms. These algorithms use diverse 
data types and trading strategies to predict asset price 
movements, to trade, and to ultimately generate profit. Level 
2 financial market, or Limit Order Book (LOB), data 
documents the full set of limit orders posted by traders at any 
given point in time. Used effectively, this data contains price 
signals that enable profitable High-Frequency Trading (HFT). 

The use of LOB data for price prediction is an active field 
of study and many contemporary methods make unrealistic 
assumptions and consequently are unprofitable when applied 
in active stock trading scenarios. The first assumption is the 
absence of trading costs and the second is that trades can be 
executed at the mid-price (Zaznov et al., 2022). Whilst 
academics argue that the second assumption is irrelevant when 
limit orders are used to lock in the mid-price for a given trade, 
this makes the further assumption that, for each trade, both 
limit orders will be fulfilled by the end of trading. This 
assumption is invalidated in markets characterised by frequent 
liquidity shortages that cause the best bid (ask) price at a given 
time to frequently fall well below (rise well above) the lowest 
(highest) transaction price in any given day. 

This report begins by briefly reviewing contemporary 
methods and models for predicting stock prices using LOB 
data, with a focus on four aspects: 1) current model 
performance on directional price prediction tasks and their 

practical limitations, 2) the importance of model 
interpretability, 3) limit order book modelling, and 4) 
supervised feature extraction. Using these findings, the report 
describes the extraction of useful features from LOB data for 
an asset with low liquidity and explores the problems that low 
market liquidity provides. From discussion of potential 
solutions, it was concluded that both engineering a suitable 
target variable and applying liquidity-related trading rules is 
necessary for ensuring profitability when used in active 
trading. These principals were then applied using a decision 
tree model with hand-crafted features and a Convolutional 
Neural Network (CNN) with a Long Short-Term Memory 
(LSTM) layer that used unsupervised feature extraction. Each 
model was carefully evaluated by measuring it against 
multiple performance criteria and assessing its profitability in 
active trading. 

II. LITERATURE REVIEW 

The study of stock price prediction using LOBs is an active 
field of study, with developments facilitated by continuous 
improvements in machine learning techniques that allow 
models to better handle the high cardinality and frequency of 
LOB data. In 2022, Zaznov et al. produced a survey, which 
synthesises contemporary methods and results for predicting 
stock price movements using LOB data, and summarises the 
limitations pertaining to data input, modelling, and 
experimental setup (Zaznov et al., 2022). 

From 2005 to 2022, models of increasing complexity were 
applied to price prediction using trading data, from simple 
linear regression and Hidden Markov Models (HMM) to deep 
neural networks that utilise multiple customised hidden layers 
and transformer blocks. Zaznov et al. evaluates the models and 
results of each study in terms of its performance, practicality, 
and experimental reproducibility, and draws several 
conclusions: 1) As model complexity increases, the tendency 
to overfit the training data increases, consequently reducing 
generalisation performance. 2)  Reproducibility and 
comparability between studies is difficult. Studies use varying 
performance metrics and different datasets; many of which are 
not publicly available. 3) All make two assumptions which 
limit their practicality when applied to active stock trading: 
there are no trading costs and trades can be executed at the 
mid-price. 

The first benchmark LOB dataset was published in 2017, 
improving comparability between subsequent studies (Zaznov 
et al., 2022, para. 21). The dataset contains 10 trading days of 
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millisecond-by-millisecond data for five stocks traded on the 
Helsinki Stock Exchange in 2010. The data includes 10 levels 
of LOB data and five indicator variables representing whether 
the mid-price increased (=1), did not change (=2), or decreased 
(=3) over five increasing intervals. Zaznov et al. highlight 
several problems with this dataset, including class imbalance, 
that the dataset may be unrepresentative of modern trading 
patterns, and that the five target variables limited models once 
again to making the unrealistic assumption that trades may be 
executed at the mid-price. 

Zaznov et al. proceed to evaluate the practicality of the 
second-best performing model, DeepLOB, which attained an 
F1 score of 83.40% on the benchmark LOB dataset. When 
applied to active stock trading for ten well-known tickers 
using a simple trading algorithm, the model achieved an 
average profit per trade of GBX 0.01. During the same period, 
the average spread (the gap between the best ask price and the 
best bid price) was GBX 0.1 – ten times the average profit per 
trade. If it was assumed that trades may be only executed as 
market orders at the best ask and bid prices, the model would 
have certainly made a loss. This highlights the inapplicability 
of the mid-price assumption made in contemporary 
experimental set ups to markets with low liquidity and is the 
first major motivation for the discussions and experiments 
described in this report. 

Another major problem with applying these models in 
active training is their interpretability. As models increase in 
complexity, there is a trade-off between performance and 
explainability. Deloitte described the need for explainable 
models as “a top priority for many banks” (Deloitte, 2022, 
para. 9). Exacerbated by the 2008 crisis and the failure of 
LTCM, Chief Data Officers (CDO) at major banks are 
constrained by tight MiFID regulations that assess the risk 
parameters inherent in their algorithms (European Central 
Bank, 2019). If banks are unable to interpret the decisions that 
their algorithms make, it is very difficult to justify their 
deployment to active trading. Deep learning techniques like 
DeepLOB and TransLOB consist of many hidden layers, 
yielding a black-box model of prediction and low 
interpretability. One data science technique for increasing 
interpretability whilst retaining accuracy is to use less complex 
models and supervised feature extraction to transform the 
model input into explainable features that aim to capture the 
important information in the data. This fundamental choice 
between supervised or unsupervised feature extraction forms 
the second key factor explored in this report. 

To understand which features can be extracted from LOB 
data to explain price movements, it is useful to consider the 
LOB as a modelling task. Gould et al. published a survey 
examining the findings from previous attempts to model a 
LOB and discusses how these models provide insights into 
certain aspects of the mechanism (Gould et al., 2013, p. 1). 
Several key features of LOBs emerge, including long memory, 
the effect of order flow imbalance on permanent price impact, 
depth profiles and patterns, and market liquidity. Three key 
aspects that have potential to effect price movements were 
selected to be examined in more detail: 1) Order Flow 
Imbalance (OFI) over a given period, 2) volume-related 
features, and 3) the bid-ask spread. 

OFI expresses the net order-flow imbalance at the best 
quotes, considering market orders, limit orders, and limit order 
cancellations (Xu et al., 2019, p. 5). Cont et al. hypothesised 
that given a short period of length t, the difference between the 

net flow of orders at the best bid price and the best ask price 
reflects demand and supply pressures that impact 
contemporaneous price movements (Cont et al., 2013, p. 1). 
The authors used one month of trading data from April 2010 
for 50 randomly chosen stocks from the S&P 500 index (Xu 
et al., 2019, p. 6). The OFI and contemporaneous price change 
were estimated for intervals of 10 seconds and grouped into 
30-minute windows. For each window, mid-price (m(t)) 
changes over each interval were regressed on the 
corresponding OFI. The regression coefficient on OFI was 
discovered to be statistically significant in 98% of cases, 
implying a strong positive correlation between OFI and mid-
price movements. 

Gould et al. observes that price and market impact is a 
concern for traders wishing to trade a volume larger than the 
depth at the best quotes (Gould et al., 2013, p. 14). Price 
impact describes the effect of a market order on the best ask 
(a(t)) and best bid prices (b(t)), whilst market impact describes 
the overall effect of a trade on the LOB (L(t)). For example, if 
a trader wishes to submit a buy market order 20 times the lot 
size of an asset and the depth at a(t) is 7 times the lot size, the 
price impact would be the change in a(t) that would result if 
the full trade was executed at time t. The market impact would 
be the corresponding effect on both a(t) and the volume at the 
next highest ask price. Future price movements are therefore 
likely affected by the relative volumes at the best quotes, and 
the overall volumes on each side of the order book. 
Furthermore, Cartea et al. discovered that when the LOB is 
buy-heavy, i.e. there is greater volume at b(t) than a(t), then it 
is much more likely that the next market order will be a buy 
order than a sell order (Cartea et al., 2015, p. 2). Cartea et al. 
quantify the imbalance between order volume at the best 
quotes using Order Book Imbalance (OBI), defined as: 

 𝑂𝐵𝐼𝑡 =  (𝑉𝑡
𝑏 −  𝑉𝑡

𝑎) / (𝑉𝑡
𝑏 +  𝑉𝑡

𝑎) (1) 

where 𝑉𝑡
𝑏 represents the order volume at the best bid price 𝑉𝑡

𝑎 
represents the best ask price at time t (Cartea et al., 2015, p. 
4). 

Studies on LOBs for numerous exchanges observed that 
traders placed more orders with a price above (below) the best 
bid price (best ask price) when the bid-ask spread (s) was 
larger than its median value (Gould et al., 2013, p. 12). Biais 
et al. (1995) hypothesised that this was because, when s is 
larger, market orders become less attractive. Gould et al. 
further argue that it is explainable within a zero-intelligence 
model – if limit order prices are chosen randomly, then when 
s is large, there is a higher probability that an incoming limit 
order will fall between b(t) and a(t) (Gould et al., 2013, p. 12). 
Regardless, this pattern implies that changes in b(t) and a(t), 
and consequently m(t), are affected by the size of the bid-ask 
spread at time t. 

III. METHODOLOGY 

A. The Dataset and Exploratory Data Analysis 

The datasets used in the study were provided by HSBC 
Global Markets and constitute the “tape” and LOB data for a 
single tradeable asset over a 6-month period. Each item in the 
LOB dataset corresponds to the state of the LOB following a 
change to limit orders quoted. This change could be caused by 
an incoming market order or limit order, or a cancellation of a 
limit order. The dataset for each trading day consists of three 
attributes: the timestamp t corresponding to the LOB at time t 
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(L(t)), the bid-side depth profile (p, nb (p, t)) at t, and the ask-
side depth profile (p, na (p, t)) at t. Each item in the tape dataset 
represents a market order with corresponding timestamp, 
execution price, and volume traded. 

Data for one trading day, chosen arbitrarily, was used to 
explore patterns and features of the LOB for this asset. First, 
b(t), a(t), s(t), and m(t) were extracted and aggregated to attain 
early signals for asset price volatility and market liquidity. Fig. 
1 shows that a(t) is highly volatile with a Coefficient of 
Variation (CV) of 56.11% for the trading day selected. 
Consequently, m(t) is also highly volatile with its range over 
three times the mean value. 

Fig. 1. Summary Statistics for b(t), a(t), s(t), and m(t). 

Fig. 2 visualises b(t) and a(t) for 1000 arbitrarily chosen 
consecutive timestamps. a(t) is characterised by frequent 
liquidity shortages on the sell-side of the LOB that cause it to 
increase sharply at regular intervals before returning to a stable 
price. 

Fig. 2. b(t) and a(t) for 1000 arbitrarily-selected consecutive timestamps. 

B. Baseline ARIMA and MACD Models 

As a performance baseline, an ARIMA model was applied 
in conjunction with a simple trading algorithm. In alignment 
with the literature, mid-price was used as a target variable, and 
the ARIMA model was designed to perform a one-step 
forecast of the mid-price based on the historic mid-prices. A 
10-second slide window is applied to compute the average 
mid-price for each period. In this way, the computational 
intensity is reduced, and the prediction reflects the mid-price 
for the prior period, rather than a single timestep in the LOB. 
Predictions are made using a rolling forecast method. To do 
this, the ARIMA model is recreated after each new 
observation is received. 

Rather than the solely considering the price, the Moving 
Average Convergence/Divergence (MACD) of the mid-price 
was investigated. The MACD indicator gives more 
information about the trend of the price. The MACD 
measurement is calculated by subtracting the 26-period 
Exponential Moving Average (EMA) from the 12-period 
EMA. EMA places more weight on the latest data and is thus, 
more responsive to the latest price changes. A positive MACD 
value indicates an upward trend whereas a negative MACD 
value indicates a downward trend. 

The trading algorithm assumes that only one share can be 
held each time. When there is no inventory, it compares the 
next predicted price with the mean price from the previous 3 
time periods, and checks if the mean of the previous 3 MACD 
values is negative. If both conditions are met, it will place a 
buy market order. Under the scenario that there is a positive 
inventory, it does the same comparison. If the predicted price 
is lower than the mean price, but higher than the mid-price, 
and the MACD mean is positive, it will then sell the share. 
Otherwise, a random number (0-1) will be generated, and the 
algorithm will sell or keep the share with a 50/50 probability. 

Under the assumption that trades can be executed at the 
mid-price, the trading algorithm generates a small profit in 
most cases. 

C. Supervised Feature Extraction 

It was hypothesised that model performance may be 
improved by extracting handcrafted features proven to be 
statistically significant in the academic literature when used to 
predict price movements. Each feature is described in turn. 

1) Order Flow Imbalance 
OFI was extracted from the data in alignment with the 

equations used by Cont et al. Let q1(τn) represent the total order 
volume at the best ask price and r1(τn) the total order volume 
at the best bid price at timestamp τn. Let both represent values 
after applying the effect of the nth order arrival or cancellation 
(Xu et al., 2019, p. 5). For a given interval (tk-1, tk], 

  𝑂𝐹𝐼(𝑡𝑘−1, 𝑡𝑘) =  ∑ 𝑒𝑛,{𝑛|𝑡𝑘−1<𝜏𝑛≤𝑡𝑘}    (2) 

where 

𝑒𝑛  ∶=  ∆𝑊(𝜏𝑛) − ∆𝑉(𝜏𝑛),     (3) 

where 

∆𝑊(𝜏𝑛) = {

𝑟1(𝜏𝑛), if 𝑏1(𝜏𝑛) > 𝑏1(𝜏𝑛−1),

𝑟1(𝜏𝑛) − 𝑟1(𝜏𝑛−1), if 𝑏1(𝜏𝑛) = 𝑏1(𝜏𝑛−1),

−𝑟1(𝜏𝑛−1), if 𝑏1(𝜏𝑛) < 𝑏1(𝜏𝑛−1);

  (4) 

and 

∆𝑉(𝜏𝑛) = {

−𝑞1(𝜏𝑛−1), if 𝑎1(𝜏𝑛) > 𝑎1(𝜏𝑛−1),

𝑞1(𝜏𝑛) − 𝑞1(𝜏𝑛−1), if 𝑎1(𝜏𝑛) = 𝑎1(𝜏𝑛−1),

−𝑞1(𝜏𝑛), if 𝑎1(𝜏𝑛) < 𝑎1(𝜏𝑛−1).

   (5) 

The OFI was extracted for 10 second intervals and the 
experiment carried out by Cont et al. described in Section II 
was replicated for data on one full trading day. For 88% of 
non-overlapping 30 minute windows, the 10 second OFI was 
positive and statistically significant at the 95% level. Fig. 3 
shows the relationship for the full trading day. 

Fig. 3. 10-second contemporaneous mid-price change regressed on OFI. 

Statistic b(t) a(t) s(t) m(t) 

Mean 103.69 164.28 60.60 133.99 

Standard Deviation 8.54 92.18 91.80 46.66 

Minimum 1.00 90.00 1.00 45.50 

Maximum 110.00 800.00 703.00 454.00 
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2) Order Book Imbalance 
The OBI at each timestamp was extracted by applying (1) 

as in Cartea et al. 

3) All-Level Order Volume Difference (AVD) 
Although the OBI captures volume-related effects on price 

movements at b(t) and a(t), it doesn’t consider volume 
changes across all levels of the LOB. For example, in a case 
where volume at b(t) is high but total volume at other levels of 
the bid side is low, then OBI would be high, but a large sell 
order could cause a large negative price impact. To capture the 
relative depth profiles across all levels, the absolute difference 
between the total volume of quotes on the buy and sell sides 
of the LOB was extracted from the data and was calculated as: 

𝐴𝑉𝐷 =  ∑ 𝑁𝑏(𝑝, 𝑡)
max

𝑚
𝑝

𝑝=0 − ∑ 𝑁𝑎(𝑝, 𝑡)
max

𝑚
𝑝

𝑝=0 ,  (6) 

where m is the total number of levels, p is the relative price, 
Nb(p,t) is the depth at relative price p and time t on the bid side, 
and Na(p,t) is the depth at relative price p and time t on the ask 
side. AVD was extracted for each timestamp t. 

An indicator variable describing the direction of the 
forward 10s mid-price change (1 – mid price increased from t 
to t + 10s, 0 – mid-price decreased from t to t + 10s) was 
extracted. This feature was then regressed on the 10s OFI, 
OBI, AVD, and s(t) for one full trading day using binary 
logistic regression. Coefficients for each variable and their 
statistical significance were used as a preliminary test for each 
feature’s ability to explain short-term mid-price changes. 

The coefficients for the intercept, OBI, AVD, and s(t) were 
statistically significant at the 99.9% level. Whereas the OFI 
was statistically insignificant with a p-value of 0.49. The 
coefficients for the intercept and OBI were positive and all 
others were negative. The results imply that although OFI can 
ably predict contemporaneous mid-price changes, it may be 
less effective for predicting forward price changes. The model 
attained an accuracy of 80.2%. However, when s(t) was 
removed, this score decreased to 61.4%. It’s high significance 
and negative sign are potentially reflective of mean reversion 
following liquidity shortages on the ask-side of the LOB and 
not actual trading signals. When removed, OFI also becomes 
statistically significant at the 99.9% level, hinting at potential 
problems with the model in its current form. This issue is 
addressed in detail in the next section. 

D. Target Variable Engineering 

Zaznov et al. highlight the limiting effect that the 
assumption that trades can be executed at the mid-price has on 
real-world application of contemporary models. The problem 
is exacerbated for markets with frequent liquidity shortages, 
where predictions of mid-price changes are often instead 
predicting large bid-ask spreads that reflect low market 
liquidity. To validate this hypothesis, the execution prices for 
one trading day of LOB data were examined. Fig. 4 shows 
summary statistics for the execution price of trades for the 
same trading day as Fig. 1. The mid-price assumption only 
holds if limit orders are submitted at equal distances from the 
desired mid-price and are executed by the end of the trading 
day. Reviewing both tables reveals that, for this asset, when 
the best ask price rises, quotes submitted at this dramatically 
higher level will never be fulfilled by the market. The mid-
price is therefore an unviable target variable for models whose 
purpose is to trade profitably in markets with low liquidity. 

 

Fig. 4. Summary stats for execution price for trading day used in Fig. 1. 

A trading algorithm that aims to trade profitably requires a 
model that predicts changes in the true price of the asset. 
Based on the premise that an asset’s true price is what 
someone last paid for it, it was hypothesised that the most 
recent execution price fulfilled this requirement. Thus, the tape 
and LOB data were combined, and a new target variable was 
extracted that indicated whether the most recent execution 
price at time t + 10s had increased (= 1) or decreased (= 0) 
relative to the most recent execution price at time t. When 
regressed on OFI, OBI, AVD, and s(t) for the same full trading 
day used previously, each of the explanatory variables were 
statistically significant at the 99.9% level, achieving an 
accuracy score of 63.5% with s(t) and 62.7% without it. 
Although this is a logical improvement from mid-price, the 
most recent execution price does not consider market liquidity 
at time t or t + 10s. Consequently, a wide bid-ask spread at 
either timestamp may mean that the trader cannot execute 
trades at a price near the most recent execution price, resulting 
in losses despite the model indicating a trade signal. 

A new target variable was proposed to tackle this problem 
and is calculated as: 

𝑆𝑖𝑔𝑛𝑎𝑙 = {
0, if 𝑏1(𝜏𝑛) ≥ 𝑎1(𝜏𝑛+𝑡) + 𝑀𝑆,

2, if 𝑎1(𝜏𝑛) ≤ 𝑏1(𝜏𝑛+𝑡) − 𝑀𝑆,
1, otherwise,

  (7) 

where b1(τn) and a1(τn) represent the best bid and ask price at 
timestamp τn, and b1(τn+t) and b1(τn+t) represent the best bid and 
ask price after some arbitrary regular interval t. A value of 0 
signifies to the trading algorithm that the current bid price is 
greater than or equal to the future ask price plus some arbitrary 
Margin of Safety (MS). Thus, the algorithm should sell the 
asset and buy it back after t seconds to make a profit. The same 
logic is applied to a buy signal, represented by a value of 2. In 
all other cases, the equation returns a value of 1, indicating that 
trading at timestamp τn and reversing the trade at τn+t is not 
profitable for a given MS. MS can be chosen to best  

accommodate a trader’s risk tolerance. This new target 
variable considers market liquidity at both τn and τn+t, and 
when used as a target variable for price prediction, indicates 
trade signals based on the true price of the asset. Thus, price 
prediction tasks described in the rest of this report use (7) with 
MS = 2 and t = 10s for each model’s target variable. 

E. Modelling 

Two approaches to modelling the target variable were 
considered. Each approach was dictated by the model input 
chosen: handcrafted features described in Section C or 
unsupervised feature extraction using artificial neural 
networks (ANN). 

1) Modelling with Handcrafted Features 
Decision tree models for classification provide a highly 

interpretable non-linear mapping between a vector of inputs 
and a class label. Using a decision tree model for this task 
assumes that the input variables, 10s OFI, OBI, AVD, and the 

Statistic Execution Price 

Mean 104.36 

Standard Deviation 3.61 

Minimum 90.00 

Maximum 110.00 
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bid-ask spread, at time t are necessary to predict whether a 
trade executed at time t and reversed at time t + 10s will 
generate a profit. 

To reduce selection bias, 9-fold cross-validation was used 
on a randomly chosen window of 9 consecutive trading days. 
To simulate batch training in active trading, the model was 
trained on eight trading days and then used to predict trading 
signals and resulting profit for the ninth day. 

2) Modelling using Unsupervised Feature Extraction 
Instead of running supervised learning algorithms on 

handcrafted features, neural networks can be used to learn 
features automatically from the LOB data. Convolutional 
Neural Networks (CNNs) are very powerful tools for 
extracting information using filters. With a careful design of 
filters and strides, it can learn relevant features and capture 
useful local spatial dependencies from the input data. In the 
example of using the LOB, each level in the LOB contributes 
differently to the change in the price. 

Long Short-Term Memory Networks (LSTMs) were 
designed originally to solve the gradient vanishing problem 
that occurs in Recurrent Neural Networks (RNNs). The 
concept of gates was introduced in LSTM to control the flow 
of information, thus enabling the network to “choose” what 
information to remember and what to forget. Like RNNs, 
LSTMs learn time dependencies from the data but also 
maintain a much longer memory. 

Data normalisation is required before feeding the data into 
the neural network. It is an important step because the model 
performance is highly dependent on the normalisation process. 
A robust normalisation scheme allows the model to adapt to 
frequent price changes in a volatile market. Instead of 
normalising data statically, a dynamic normalisation scheme 
is used for this task. To normalise the current day’s data, the 
mean and standard deviation of the data from the three 
previous days are used. Specifically, normalisation is done by 
removing the mean and scaling to unit variance. The 
normalised value for a sample x is calculated as: 

𝑧 =  (𝑥 −  𝑢) / 𝑠     (8) 

where u and s are the mean and standard deviation of the 
training samples respectively. In this task, the most recent 10 
states of the LOB are used as input to the network and a single 
state contains 6 levels of LOB data. Specifically, a single input 
can be denoted by 

𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑡 , … , 𝑥10] ∈ 𝑅𝟙𝟘×𝟚𝟜,   (9) 

where 𝑥𝑡 = [𝑃𝑎
{𝑖}

, 𝑉𝑎
{𝑖}

, 𝑃𝑏
{𝑖}

, 𝑉𝑏
{𝑖}

]
𝑖=1

𝑛=6

 with 𝑃{𝑖}  and 

𝑉{𝑖} denotes the price and volume of the i-th level of the limit 
order book. This results in a single input of shape (10, 24). 
After processing the limit order data, the 10 second forward 
trade signal described in (7) with MS = 2 is used as target 
variables for each timestamp. 

Instead of feeding the data directly to an LSTM network, 
the network was designed to combine both CNN layers and 
LSTM layers. Feature maps learned by the CNN layers not 
only capture the spatial dependencies, but also preserve the 
time information in the data. In total, the network contains 
three convolutional layers and one LSTM layer. The purpose 
of the final LSTM layer is to capture the time dependencies in 
the resulting feature maps. CNN layers use filters with a 
defined stride to slide through the input, which means 

parameters are shared between input features. In this task, the 
size of the filters from the first two convolutional layers is set 
to (1 x 2) with a stride of (1 x 2). The intuition behind this is 
that the parameters are shared by each price-volume pair at the 
first layer. At the second layer, the receptive field is expanded 
as parameters are now shared by each level of the limit order 
book. After two layers of convolution, the resulting feature 
maps will have a shape of (10, 6). In the last convolutional 
layer, a filter of size (1 x 6) is applied to integrate all the 
information from the feature maps, resulting in final feature 
maps of shape (10, 1). Note that each convolutional layer uses 
32 filters, the output is then reshaped and fed into the LSTM 
layer with 64 units. The output layer uses a softmax activation 
function and hence the output reflects the probability of the 
three trading operations (sell, neutral, buy). 

 

Fig. 5. Network architecture diagram. 

F. Trading Algorithm and Profit Assumptions 

The models described above map inputs to trade signals, 
which instruct the trader to buy or sell at time t and reverse the 
trade at time t + 10s to generate a net profit. During testing, 
false positives often led to outsized per-trade losses when the 
spread at time t or t + 10 was large. To mollify the negative 
effect of these instances on profitability, two simple trading 
rules were implemented: 

1. If s(t) > 𝑥, where 𝑥 is a variable to be determined, do 
not execute the trade. 

2. If reversing the trade at time t + 10s is not profitable, 
hold the position as inventory. 

For performance evaluation and comparability between model 
performance, it was necessary to include the value of 
inventory in profit calculation for each trading day. Therefore, 
total profit was calculated as the summation of three numbers: 
1) profit from executed (and reversed after 10s) trades, 2) net 
profit from ‘netting’ the inventory of buy orders and sell orders 
at their average price, and 3) profit from selling (buying back) 
the remaining inventory at the day average bid (ask) price. 

For example, the model generates 35,879 from trading on 
correct predictions (making the indicated trade and reversing 
it after 10s). It makes a total of 3,768 incorrect sell predictions, 
yielding a sell inventory of 3,768 with average price 105. It 
also makes a total of 7,531 incorrect buy predictions, yielding 
a buy inventory of 7,531 buy orders with average price £1.08. 
The day average bid price was 106. Total Profit (TP) is 
calculated as follows: 

𝑇𝑃 = 35,879 + (−3 ∗ 3,768) + ((7,531 − 3,768) ∗ −2) = 17,049 
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For simplicity, this makes the realistic assumption that any 
remaining inventory can be sold (bought back) at the average 
bid (ask) price for the trading day. More sophisticated 
methods, including using the moving average bid (ask) price 
to inform inventory offloading decisions, are likely to yield 
superior profit performance. 

This aim of this report is to create models that produce 
profitable outcomes in active trading, not maximise profit 
generation. Therefore, volume per trade is always equal to 1. 
Although this limits total profit generated, the additional 
complexity provided by mechanisms to optimise volume 
traded is outside the scope of this report. 

IV. DATA DESCRIPTION / PREPARATION 

Nine consecutive trading days were randomly sampled 
from the dataset. For the decision tree model using handcrafted 
features, 10s OFI, OBI, AVD, and s(t) were extracted using 
the equations described in Section III C. The target variable – 
10s forward price signal described in (7) with MS = 2 – was 
extracted for each timestamp in the dataset. Total instances of 
each class are shown in Fig. 6. 

For the ANN, five consecutive days were randomly 
sampled from the dataset to train the model and feature vectors 
were extracted in the form described in Section III. The dataset 
consisted of 1,604,195 instances and exhibited similar class 
imbalances to those in Fig. 6. The model was trained using a 
window size of 20 and a stride of 1 and used the same target 
variable described above. Another five consecutive days were 
randomly sampled for testing. 

Class Label Number of Instances 

0 (Sell Prediction) 262,833 

1 (Neutral Prediction) 2,374,833 

2 (Buy Prediction) 231,696 

Dataset Size 2,869,362 

Fig. 6. Decision tree Model dataset class summary. 

V. RESULTS AND DISCUSSION 

The performance of each model is evaluated in turn. 
Section C compares the benefits and drawbacks of applying 
each approach to active trading. 

A. Decision Tree Results 

Fig. 7 displays the average performance metrics for the 
decision tree model’s performance across each of the nine 
days used as a test set. 

Accuracy 73.18% 

Macro-average Precision 42.61% 

Macro-average Recall 42.85% 

Macro-average F1 42.66% 

Sell Prediction (=0) Precision 11.36% 

Sell Prediction (=0) Recall 12.68% 

Buy Prediction (=2) Precision 31.35% 

Buy Prediction (=2) Recall 31.89% 

Fig. 7. Average decision tree model performance metrics from 9-fold cross 

validation. 

Macro-averages were chosen to reflect equal class 
importance for active trading. Precision is useful for 
evaluating whether the model is profitable, and recall is useful 
for determining the proportion of profit opportunities it takes 

advantage of. For profitability, class-specific precision for 
classes 0 and 2 are more important than that for class 1, as false 
positives lead to unprofitable trades. Class-specific recall for 
classes 0 and 2 indicate the proportion of sell and buy 
opportunities respectively the model predicts correctly. A 
further review of the normalised confusion matrix for all 9 test 
days in Fig. 8 visualises the problem of class imbalance for 
making predictions using the decision tree model. 

 

Fig. 8. Decision tree model normalised confusion matrix for performance 

on all 9 test sets. 

 The model does well at predicting the majority class (=1), 
with a recall score of 83.89%. However, it achieves precision 
and recall scores for the buy class (=2) of <35% and precision 
and recall scores of <13% for the sell class (=0). Decision tree 
models are notoriously poor at predicting minority classes due 
to the prioritising of the majority class during tree-building. 

Using the model predictions, profits generated by the 
trading algorithm described in Section III F can be seen in Fig. 
9. Despite poor classification performance, the algorithm was 
consistently profitable throughout the period, making a 
positive total profit for every trading day except day 4 for x = 
5. As expected, higher values for the minimum spread yielded 
increasing variability in daily profit, with x = 5 achieving the 
maximum or minimum total profit for 78% of trading days. 
Considering a trader’s risk tolerance, values for x of 1, 2, or 3 
are all viable options. Values of 4 and 5 do not yield superior 
profits, but still experience higher standard deviation of 
profits. 

Day 
Profit with Trading Algorithm Min s(t) Condition (x) 

x = 1 x = 2 x = 3 x = 4 x = 5 

1 9,816 14,676 15,616 16,771 17,916 

2 5,758 6,748 6,821 6,646 6,950 

3 5,383 9,071 10,641 10,760 12,127 

4 4,185 2,849 1,577 380 -1,299 

5 6,186 7,790 8,040 6,760 6,188 

6 4,652 4,212 2,180 524 56 

7 6,584 8,601 8,059 8,135 7,817 

8 4,529 6,497 7,094 6,639 7,277 

9 7,541 11,539 13,826 13,860 16,018 

Total 54,633 71,984 73,853 70,475 73,050 

Average 6,070 7,998 8,206 7,831 8,117 

Std 1,666 3,389 4,420 5,141 6,092 

Fig. 9. Decision tree model profit performance for each of the 9 test days 

and each value of x (minimum spread condition parameter used in the trading 

algorithm). 
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B. Neural Network Results 

Fig. 10 displays the average performance metrics for the 
ANN’s performance across each of the five days used as a test 
set. It is immediately apparent that the ANN outperforms the 
decision tree model for trade signal prediction using the LOB 
data. However, it suffers from similar problems relating to 
class imbalance, yielding a class-specific recall for the sell 
class (=0) of close to 0%. 

Accuracy 85.93% 

Macro-average Precision 76.07% 

Macro-average Recall 58.04% 

Macro-average F1 53.23% 

Sell Prediction (=0) Precision 80.00% 

Sell Prediction (=0) Recall 0% 

Buy Prediction (=2) Precision 59.21% 

Buy Prediction (=2) Recall 78.51% 

Fig. 10. Average ANN performance metrics  

The CNN model achieves a similarly high performance 
when predicting the majority class (=1) with an accuracy of 
95%. However, the class-specific precision and recall scores 
for the buy class (=2) have improved significantly by 28% and 
47% respectively. This implies that it will be more profitable 
than the decision tree for buy market order opportunities. 

As can be seen in Fig. 11, the major limitation of the CNN 
model is that it fails to predict sell signals. This is once again 
due to imbalanced classes and the model struggles to 
distinguish a sell signal from a neutral signal. Down-sampling 
the majority class was applied to attempt to resolve this 
problem. However, the model fails to generalise well on the 
test data, instead predicting a large proportion of neutral 
instances as sell signals. This suggests that the features that 
characterise sell signals are very similar to those of neutral 
instances. 

 

Fig. 11. ANN normalised conufsion matrix for performance on the test set. 

Profits generated by applying the ANN and trading 
algorithm to unseen data can be seen in Fig. 12. Note that the 
results from the table are obtained by setting x to 3, the optimal 
value discovered in Fig. 9. Even though the model fails to 
predict sell signals, it consistently generates much higher 
profits than the decision tree model. On five days of test data, 
it yields an impressive average daily profit of 61,396.46. 

 

 

Day Total Profit 

1 92,745.65 

2 50,876.84 

3 54,878.67 

4 43,098.58 

5 65,382.58 

Total Profit 306,982.32 

Average 61,396.46 

Standard Deviation 19,278.34 

Fig. 12. ANN profit performance for each of the 5 test days. 

C. Implications for Active Trading 

Although both models have problems that stem from class 
imbalances and consequently struggle to predict trading 
accurately, both generate consistently positive profit for each 
trading day tested. This implies that the decision to choose the 
target variable engineered in Section III over the frequently 
selected mid-price is effective for improving practicality of 
models for markets with low liquidity. Active traders can 
utilise this approach for profitable trading in real markets. 
Furthermore, state-of-the-art models and more sophisticated 
trading algorithms, are likely to achieve similar, if not better, 
results. 

The ANN generates, on average, 800% more profit per 
trading day. This reflects its ability to model more complex 
relationships between features and the information lost in 
supervised feature extraction. Furthermore, the results 
demonstrate the trade-off between interpretability and 
performance. Although the decision tree model performs 
worse and generates inferior profits for unseen data, it makes 
highly interpretable decisions that can be explained by 
understandable, calculated features. More advanced 
Explainable AI (XAI) techniques may improve this trade-off, 
but ultimately optimal model complexity is determined by 
users’ preferences and restraints. 

VI. FURTHER WORK AND IMPROVEMENT 

A. Class Imbalance 

Both models suffered from class imbalance problems that 
could be solved using upsampling methods or class 
reweighting. Further work that applied these methods is likely 
to achieve better performance on unseen data. 

B. Computational Limitations 

Training the CNN was computationally expensive. To 
improve comparability and robustness of results, it would have 
been beneficial to use 9-fold cross validation on the same 9 
days of LOB data used to test the decision tree model when 
testing the CNN’s performance. Furthermore, performance be 
improved by utilising more trading days to train the model. 
Both these improvements were infeasible given time and 
computational limitations. 

C. Probabilistic Modelling 

Probabilistic modelling is a statistical approach that places 
a probability distribution over model parameters. Unlike 
frequentist approaches, probabilistic models use Bayesian 
inference to infer the parameters of the model given the 
observed data and prior knowledge. The result is the 
incorporation of uncertainty into model predictions. 
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Using a Bayesian decision tree, Probabilistic Artificial 
Neural Network (PANN), or other probabilistic model to make 
predictions would enable a trading algorithm to consider 
prediction uncertainty and make better-informed trading 
decisions accordingly. This is likely to lead to more profitable 
trading outcomes than those described in this report. 

D. Reinforcement Learning 

Reinforcement learning is a relatively new agent-based 
approach to LOB price prediction. An agent learns to predict 
the future price by taking actions that modify the limit order 
book and observing the resulting rewards. The rewards are 
based on the difference between the predicted price and the 
actual price, and the agent uses these rewards to update its 
policy for taking actions. Future work could use the 
experimental setup described in this report in combination 
with reinforcement learning models, like the S3C model, to 
investigate whether they improve profitability. 

VII. CONCLUSIONS 

Existing techniques for price prediction using LOB data 
make the unrealistic assumption that trades can be executed at 
the mid-price. This assumption is invalidated for markets with 
low liquidity. High bid-ask spread volatility in these markets 
means that models trained to predict mid-price changes cannot 
be applied profitably to active trading scenarios. This report 
describes methods used to engineer a target variable that 
considers the quoted best bid and ask prices, thus overcoming 
these challenges. 

Two approaches to modelling this variable were proposed. 
1) A decision tree model using highly interpretable 
handcrafted features, including the OFI, OBI, AVD, and s(t), 
and 2) an ANN with LSTM and CNN layers, which uses 10 
previous states of the LOB to make its prediction. Despite 
problems with class imbalance that caused suboptimal 
classification performance, both achieved profitable outcomes 
when combined with a simple trading algorithm that 
considered market liquidity and made realistic inventory 
assumptions. 

There is increasing importance placed on model 
interpretability by regulators and finance professionals and 
one method for achieving this is to use less complex models 
with interpretable features. Although the handcrafted features 
described in this report provide some information for 
predicting trade signals, the ANN generated on average 800% 
more profit per trading day than the decision tree model. This 
implies that price prediction using LOB data is an inherently 
complex problem, and to achieve the highest profitability, 
statistical techniques that can model this complexity are 
required. 

The results suggest that adjustments to experimental set 
up, when combined with state-of-the-art modelling and 
trading algorithms conditioned on market liquidity, can 
overcome the practicality issues associated with current 
methods. Future work can build on the methods and findings 
described in this report and apply them to active trading 
scenarios. 
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